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Abstract

Generative Adversarial Networks (GANs) use an adversarial process between
two models( a discriminator and a generator) which are simultaneously trained
to estimate a generative model. GANs have recently been shown to be efficient
for speech enhancement. One such architecture, the Speech Enhancement GAN
uses Least Squares GAN to perform speech enhancement on audio samples. We
are examining the performances the SEGAN and its variations with the Departure
From Normality(DFN) metric and Wasserstein loss(WSEGAN) on two data sets:
one comprising of Human Speech and other comprising of instrumental music.
We use Signal-to-Noise Ratio(SNR), Peak SNR and Signal-to-Distortion Ratio to
quantitatively analyse the results of our architectures.

1 Introduction

Sound enhancement (SE) models have the aim of improving the quality of captured sound audio
signals. We can define the problem formally: given a dataset X = {(x1, x̃1), (x2, x̃2), ..., (xN , x̃N )}
which consists of N pairs of noisy (x) and clean (x̃) audio signals, find a mapping f(x̃) : x̃ → x [5].

Speech Enhancement GAN (SEGAN): The SEGAN [3] generator takes in the noisy signal x̃ and a
latent vector z to produce the clean signal x̂ = G(x̃, z). Conversely, the discriminator D receives
a pair of signals that it learns to classify as the real pair (x, x̃) or the fake pair (x̂, x̃). SEGAN
also employs the least-squares GAN (LSGAN) [2] to improve stability by replacing the traditional
cross-entropy loss in the discriminator by the least-squares loss. Additionally, SEGAN includes
an ℓ1-norm term between the clean and generated signals to the generator’s objective function to
generate a more realistic result. The ℓ1-norm term is regulated by the hyper-parameter λ. The
SEGAN objective functions of D and G are written as follows:

minDVLS(D) =
1

2
Ex,x̃∼pdata(x,x̃)(D(x, x̃)− 1)2

+
1

2
Ez∼pz(z),x̃∼pdata(x̃)D(G(x̃, z), x̃)2 (1)

minGVLS(G) =
1

2
Ez∼pz(z),x̃∼pdata(x̃)(D(G(x̃, z), x̃)− 1)2

+ λ||Gn(x̃, z)− x||1 (2)
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Wasserstein GANs (WGAN). In Wasserstein GANs [4] we replace the GAN discriminator with a
critic that outputs predictions in the range of (-inf, inf) instead of [0, 1] in a vanilla GAN with cross
entropy or least squares loss ( enforcing the critic function to be 1-Lipschitz continuous by clipping
the weights of the critic between training batches). We also use a different loss metric called the
Wasserstein Loss which essentially estimates the Earth Mover(EM) distance metric [4]. We can then
train the Wasserstein critic to convergence without worrying about vanishing gradients as the EM
distance is continuous and differentiable everywhere, thus giving us useful gradients till we reach
optimality.

Departure From Normality(DFN) metric[1]: In improving stability with LS GANs[2], the main
motivation of the paper is to introduce a new loss metric for the Generator, this new similarity metric
is in unitary space of Schur decomposition for 2D representation of audio and speech signals known
as the DFN (Departure from Normality) metric[1].

2 Method

For the WSEGAN we change the discriminator loss and the generator loss in the SEGAN so that the
new losses are:

Vwasserstein(D) = Ex,x̃∼pdata(x,x̃)(D(x, x̃))

− Ez∼pz(z),x̃∼pdata(x̃)D(G(x̃, z), x̃) (1)

Vwasserstein(G) = Ez∼pz(z),x̃∼pdata(x̃)(D(G(x̃, z), x̃))

+ λ||Gn(x̃, z)− x||1 (2)

Additionally we introduce gradient clipping with a lower limit -0.05 and an upper limit of 0.05 for the
gradients. Notice here that in the generator loss we still have the same L1 loss (as vanilla SEGAN)
along with the new adversarial loss. This is because the L1 norm encourages the generator to learn
the structure of the audio data and output more realistic results. Our objective is to maximise the
generator loss while minimising the discriminator loss.

For the third architecture, we use DFN metric on the SEGAN generator along with the loss function,
the DFN metric is enforced as:

min
1

2
Ez∼pz [D(G(z)− 1)2] such that |[Ez pzδ

2G(z)− Ex∼prδ
2G(x)]| < ϵ [1]

δ2 function is calculated the same way as mentioned by Mohammad Esmaeilpour[1]. The epsilon
value chosen is the max|Vx|

min|Vg| this is chosen from the paper. Here Vx eigen values of the real sample
and Vg eigen values of the generated matrix. The idea of having it is because we don’t want the loss
to take too many large steps which may lead to skipping of adjacent sub spaces of pr[1]

For training our models we initialise the loss arrays for the different types of losses we have: dis-
criminator loss on fake(generated) samples, discriminator loss on real samples, adversarial generator
loss on generated images and L1 generator loss. We then initialise the parameters like batch size
and learning rates and train the models. For each model in each training loop, we first train the
discriminator for one iteration and then train the generator and so on just like Pascual et al[]. We train
both SEGANs( with and without DFN) for 5 epochs and WSEGANs for 15 epochs all with a batch
size of 350.

3 Experiments

3.1 Datasets

In this section we will first introduce two datasets which we have chosen to evaluate the three
architectures. The descriptions of the datasets used are as follows:

Speech dataset presented by Valentini-Botinhao et al. (2016) for speech enhancement. The
dataset contains audio from 30 speakers from the Voice Bank corpus [7] with the noisy
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conditions created using artificial noise and noise stemmed from the Demand database [] at
various signal-to-noise ratios (SNRs).
Music, a dataset that we created by applying noise to the original dataset presented by Mehri
et al. (2016) for audio generation that consists of 10 hours of Beethoven sonatas. For the
training data we used two noisy conditions (artificial white noise and one from the Demand
database [8]) at an SNR of 20 dB. For the test data, we also used two noisy conditions of an
artificial white noise and a noise from the Demand database (different noise than training) at
an SNR of 25 dB.

3.2 Results

After training all of the models on both datasets, using the latest checkpoint we generated the
enhanced audio samples of the noisy test sets. We then evaluated the models using three metrics,
calculated on the enhanced test sets.

To evaluate the quality of the enhanced audio signals, we use three objective sound quality metrics.
All three metrics are computed by comparing the enhanced signal with the corresponding clean
signal. The three evaluation metrics we chose are: Segmental Signal-to-Noise Ratio (SSNR)[9, p.
41], Signal-to-Distortion Ratio (SDR)[10], and Peak Signal-to-Noise Ratio (PSNR). All three metrics
are measured in dB ultimately comparing the power of the desired signal to the power of the noise
signal. In all three metrics a higher more positive value is better.

Tables 1 and 2 show the results of these metrics on the speech and music datasets respectively. As a
baseline for comparison, we also include the metrics values when calculated directly on the noisy
signals which can be seen in the bottom rows of tables 1 and 2. From the results we can see that the
additional of the DFN metric and the Wassertstein loss did not have a significant impact on evaluation
metric performance when compared to the vanilla SEGAN.
In order to evaluate the stability of the three models, we plotted the generator adversarial loss over
the training batches.

Table 1: Evaluation on the speech dataset

Model Segmental SNR SDR PSNR

SEGAN 7.072027 39.720622 45.462866
SEGAN + DFN 3.993066 34.437286 39.509198
WSEGAN 8.088722 40.863101 46.304853

Noisy baseline 0.000265 31.805900 29.931449

Table 2: Evaluation on the music dataset

Model Segmental SNR SDR PSNR

SEGAN -6.924607934 2.408431 26.185589
SEGAN + DFN -6.937759953 2.139467 26.091608
WSEGAN -1.716425 -4.793059 33.101397

Noisy baseline -10.0 -1.261633 6.005957
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Figure 1: Generator adversarial loss plots of the three models.

Figure 2: Noisy Spectrogram, SEGAN Spectrogram, SEGAN with DFN spectrogram, SEGAN with
Wassterstein loss spectrogram

We observe that the addition of the DFN metric To the SEGAN makes the loss curve more stable this
is because DFN converges earlier and has less variance. WSEGAN training seems very unstable but
it performs as expected as we are trying to maximise the adversarial loss. From the spectrograms we
observe that there is clear reduction of noise in all three models but the WSEGAN has more defined
peaks than SEGAN with DFN metric and SEGAN. This may be because we train WSEGAN for
longer and it tries to solve the vanishing gradients problem that we would see in an LSGAN [2].

4 Conclusion

This paper examined the performances of three different GAN architectures on audio enhancement.
Using the SEGAN model architecture as the backbone, we evaluated the performance of the DFN
metric and Wassertstein loss on objective audio quality measures and training loss stability. We did
not find a significant improvement in the quality measures over the original SEGAN by the other
two models. We did see evidence of the DFN metric stabilizing the generator adversarial loss during
training.
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